Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8346, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594484

RESUMO

Nest-building behavior is a widely observed innate behavior. A nest provides animals with a secure environment for parenting, sleep, feeding, reproduction, and temperature maintenance. Since animal infants spend their time in a nest, nest-building behavior has been generally studied as parental behaviors, and the medial preoptic area (MPOA) neurons are known to be involved in parental nest-building. However, nest-building of singly housed male mice has been less examined. Here we show that male mice spent longer time in nest-building at the early to middle dark phase and at the end of the dark phase. These two periods are followed by sleep-rich periods. When a nest was removed and fresh nest material was introduced, both male and female mice built nests at Zeitgeber time (ZT) 6, but not at ZT12. Using Fos-immunostaining combined with double in situ hybridization of Vgat and Vglut2, we found that Vgat- and Vglut2-positive cells of the lateral preoptic area (LPOA) were the only hypothalamic neuron population that exhibited a greater number of activated cells in response to fresh nest material at ZT6, compared to being naturally awake at ZT12. Fos-positive LPOA neurons were negative for estrogen receptor 1 (Esr1). Both Vgat-positive and Vglut2-positive neurons in both the LPOA and MPOA were activated at pup retrieval by male mice. Our findings suggest the possibility that GABAergic and glutamatergic neurons in the LPOA are associated with nest-building behavior in male mice.


Assuntos
Hipotálamo , Área Pré-Óptica , Humanos , Camundongos , Masculino , Feminino , Animais , Hipotálamo/fisiologia , Área Pré-Óptica/fisiologia , Neurônios/fisiologia
2.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199807

RESUMO

Orexins, which are produced within neurons of the lateral hypothalamic area, play a pivotal role in the regulation of various behaviors, including sleep/wakefulness, reward behavior, and energy metabolism, via orexin receptor type 1 (OX1R) and type 2 (OX2R). Despite the advanced understanding of orexinergic regulation of behavior at the circuit level, the precise distribution of orexin receptors in the brain remains unknown. Here, we develop a new branched in situ hybridization chain reaction (bHCR) technique to visualize multiple target mRNAs in a semiquantitative manner, combined with immunohistochemistry, which provided comprehensive distribution of orexin receptor mRNA and neuron subtypes expressing orexin receptors in mouse brains. Only a limited number of cells expressing both Ox1r and Ox2r were observed in specific brain regions, such as the dorsal raphe nucleus and ventromedial hypothalamic nucleus. In many brain regions, Ox1r-expressing cells and Ox2r-expressing cells belong to different cell types, such as glutamatergic and GABAergic neurons. Moreover, our findings demonstrated considerable heterogeneity in Ox1r- or Ox2r-expressing populations of serotonergic, dopaminergic, noradrenergic, cholinergic, and histaminergic neurons. The majority of orexin neurons did not express orexin receptors. This study provides valuable insights into the mechanism underlying the physiological and behavioral regulation mediated by the orexin system, as well as the development of therapeutic agents targeting orexin receptors.


Assuntos
Núcleo Dorsal da Rafe , Receptores Acoplados a Proteínas G , Camundongos , Animais , Receptores de Orexina/genética , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Mapeamento Encefálico , Hibridização In Situ , RNA Mensageiro
3.
J Neurosci ; 43(44): 7322-7336, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722849

RESUMO

The medial preoptic area (MPOA) is a sexually dimorphic region of the brain that regulates social behaviors. The sexually dimorphic nucleus (SDN) of the MPOA has been studied to understand sexual dimorphism, although the anatomy and physiology of the SDN is not fully understood. Here, we characterized SDN neurons that contribute to sexual dimorphism and investigated the mechanisms underlying the emergence of such neurons and their roles in social behaviors. A target-specific neuroanatomical study using transgenic mice expressing Cre recombinase under the control of Calb1, a gene expressed abundantly in the SDN, revealed that SDN neurons are divided into two subpopulations, GABA neurons projecting to the ventral tegmental area (VTA), where they link to the dopamine system (CalbVTA neurons), and GABA neurons that extend axons in the MPOA or project to neighboring regions (CalbnonVTA neurons). CalbVTA neurons were abundant in males, but were scarce or absent in females. There was no difference in the number of CalbnonVTA neurons between sexes. Additionally, we found that emergence of CalbVTA neurons requires two testicular androgen actions that occur first in the postnatal period and second in the peripubertal period. Chemogenetic analyses of CalbVTA neurons indicated a role in modulating sexual motivation in males. Knockdown of Calb1 in the MPOA reduced the intromission required for males to complete copulation. These findings provide strong evidence that a male-specific neural pathway from the MPOA to the VTA is organized by the two-step actions of testicular androgens for the modulation of sexually motivated behavior.SIGNIFICANCE STATEMENT The MPOA is a sexually dimorphic region of the brain that regulates social behaviors, although its sexual dimorphism is not fully understood. Here, we describe a population of MPOA neurons that contribute to the sexual dimorphism. These neurons only exist in masculinized brains, and they project their axons to the ventral tegmental area, where they link to the dopamine system. Emergence of such neurons requires two testicular androgen actions that occur first in the postnatal period and second in the peripubertal period. These MPOA neurons endow masculinized brains with a neural pathway from the MPOA to the ventral tegmental area and modulate sexually motivated behavior in males.


Assuntos
Androgênios , Área Pré-Óptica , Animais , Camundongos , Feminino , Masculino , Área Pré-Óptica/fisiologia , Androgênios/metabolismo , Área Tegmentar Ventral , Dopamina/metabolismo , Vias Neurais , Camundongos Transgênicos
4.
Neurosci Lett ; 814: 137463, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37640249

RESUMO

Transient receptor potential melastatin 8 (TRPM8) is a menthol receptor that detects cold temperatures and influences behaviors and autonomic functions under cold stimuli. Despite the well-documented peripheral roles of TRPM8, the evaluation of its central functions is still of great interest. The present study clarifies the nature of a subpopulation of TRPM8-expressing neurons in the adult mice. Combined in situ hybridization and immunohistochemistry revealed that TRPM8-expressing neurons are exclusively positive for glutamate decarboxylase 67 mRNA signals in the lateral septal nucleus (LS) and preoptic area (POA) but produced no positive signal for vesicular glutamate transporter 2. Double labeling immunohistochemistry showed the colocalization of TRPM8 with vesicular GABA transporter at axonal terminals. Immunohistochemistry further revealed that TRPM8-expressing neurons frequently expressed calbindin and calretinin in the LS, but not in the POA. TRPM8-expressing neurons in the POA expressed a prostaglandin E2 receptor, EP3, and neurotensin, whereas expression in the LS was minimal. These results indicate that hypothalamic TRPM8-expressing neurons are inhibitory GABAergic, while the expression profile of calcium-binding proteins, neurotensin, and EP3 differs between the POA and LS.


Assuntos
Neurotensina , Canais de Cátion TRPM , Animais , Camundongos , Proteínas de Ligação ao Cálcio , Calbindinas , Temperatura Baixa , Neurônios
5.
Fish Physiol Biochem ; 49(4): 751-767, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37464181

RESUMO

The Na+/K+-ATPase (NKA) α1-isoforms were examined by in situ hybridization chain reaction (ISHCR) using short hairpin DNAs, and we showed triple staining of NKA α1a, α1b, and α1c transcripts in the gill of chum salmon acclimated to freshwater (FW) and seawater (SW). The NKA α1-isoforms have closely resembled nucleotide sequences, which could not be differentiated by conventional in situ hybridization. The ISHCR uses a split probe strategy to allow specific hybridization using regular oligo DNA, resulting in high specificity at low cost. The results showed that NKA α1c was expressed ubiquitously in gill tissue and no salinity effects were observed. FW lamellar ionocytes (type-I ionocytes) expressed cytoplasmic NKA α1a and nuclear NKA α1b transcripts. However, both transcripts of NKA α1a and α1b were present in the cytoplasm of immature type-I ionocytes. The developing type-I ionocytes increased the cytoplasmic volume and migrated to the distal region of the lamellae. SW filament ionocytes (type-II ionocytes) expressed cytoplasmic NKA α1b transcripts as the major isoform. Results from morphometric analysis and nonmetric multidimensional scaling indicated that a large portion of FW ionocytes was NKA α1b-rich, suggesting that isoform identity alone cannot mark the ionocyte types. Both immature or residual type-II ionocytes and type-I ionocytes were found on the FW and SW gills, suggesting that the chum salmon retains the potential to switch the ionocyte population to fit the ion-transporting demands, which contributes to their salinity tolerance and osmoregulatory plasticity.


Assuntos
Brânquias , Oncorhynchus keta , Animais , Brânquias/metabolismo , Oncorhynchus keta/genética , Oncorhynchus keta/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Isoformas de Proteínas/genética , Água do Mar , Água Doce , Sódio , Hibridização In Situ
6.
Nature ; 612(7940): 512-518, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36477539

RESUMO

Progress has been made in the elucidation of sleep and wakefulness regulation at the neurocircuit level1,2. However, the intracellular signalling pathways that regulate sleep and the neuron groups in which these intracellular mechanisms work remain largely unknown. Here, using a forward genetics approach in mice, we identify histone deacetylase 4 (HDAC4) as a sleep-regulating molecule. Haploinsufficiency of Hdac4, a substrate of salt-inducible kinase 3 (SIK3)3, increased sleep. By contrast, mice that lacked SIK3 or its upstream kinase LKB1 in neurons or with a Hdac4S245A mutation that confers resistance to phosphorylation by SIK3 showed decreased sleep. These findings indicate that LKB1-SIK3-HDAC4 constitute a signalling cascade that regulates sleep and wakefulness. We also performed targeted manipulation of SIK3 and HDAC4 in specific neurons and brain regions. This showed that SIK3 signalling in excitatory neurons located in the cerebral cortex and the hypothalamus positively regulates EEG delta power during non-rapid eye movement sleep (NREMS) and NREMS amount, respectively. A subset of transcripts biased towards synaptic functions was commonly regulated in cortical glutamatergic neurons through the expression of a gain-of-function allele of Sik3 and through sleep deprivation. These findings suggest that NREMS quantity and depth are regulated by distinct groups of excitatory neurons through common intracellular signals. This study provides a basis for linking intracellular events and circuit-level mechanisms that control NREMS.


Assuntos
Neurônios , Duração do Sono , Sono , Vigília , Animais , Camundongos , Eletroencefalografia , Neurônios/metabolismo , Neurônios/fisiologia , Sono/genética , Sono/fisiologia , Privação do Sono/genética , Vigília/genética , Vigília/fisiologia , Transdução de Sinais , Ritmo Delta , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Ácido Glutâmico/metabolismo , Sono de Ondas Lentas/genética , Sono de Ondas Lentas/fisiologia
7.
Front Mol Neurosci ; 15: 976349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36117911

RESUMO

Recent technical advances have made fluorescent in situ hybridization (ISH) a pivotal method to analyze neural tissue. In a highly sensitive ISH, it is important to reduce tissue autofluorescence. We developed a photobleaching device using a light-emitting diode (LED) illuminator to quench autofluorescence in neural tissue. This device was equipped with 12 high-power LEDs (30 W per single LED) and an evaporative cooling system, and these features achieved highly efficient bleaching of autofluorescence and minimized tissue damage. Even after 60 min of photobleaching with evaporative cooling, the temperature gain of the tissue slide was suppressed almost completely. The autofluorescence of lipofuscin-like granules completely disappeared after 60 min of photobleaching, as did other background autofluorescence observed in the mouse cortex and hippocampus. In combination with the recently developed fluorescent ISH method using the hybridization chain reaction (HCR), high signal/noise ratio imaging was achieved without reduction of ISH sensitivity to visualize rare mRNA at single copy resolution by quenching autofluorescence. Photobleaching by the LED illuminator was also effective in quenching the fluorescent staining of ISH-HCR. We performed multiround ISH by repeating the cycle of HCR staining, confocal imaging, and photobleaching. In addition to the two-round ISH, fluorescent immunohistochemistry or fluorescent Nissl staining was conducted on the same tissue. This LED illuminator provides a quick and simple way to reduce autofluorescence and quench fluorescent dyes for multiround ISH with minimum tissue degradation.

8.
Mucosal Immunol ; 15(6): 1321-1337, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35999460

RESUMO

Control of gut microbes is crucial for not only local defense in the intestine but also proper systemic immune responses. Although intestinal epithelial cells (IECs) play important roles in cytokine-mediated control of enterobacteria, the underlying mechanisms are not fully understood. Here we show that deletion of IκBζ in IECs in mice leads to dysbiosis with marked expansion of segmented filamentous bacteria (SFB), thereby enhancing Th17 cell development and exacerbating inflammatory diseases. Mechanistically, the IκBζ deficiency results in decrease in the number of Paneth cells and impairment in expression of IL-17-inducible genes involved in IgA production. The decrease in Paneth cells is caused by aberrant activation of IFN-γ signaling and a failure of IL-17-dependent recovery from IFN-γ-induced damage. Thus, the IL-17R-IκBζ axis in IECs contributes to the maintenance of intestinal homeostasis by serving as a key component in a regulatory loop between the gut microbiota and immune cells.


Assuntos
Disbiose , Interleucina-17 , Células Th17 , Animais , Camundongos , Disbiose/metabolismo , Células Epiteliais , Expressão Gênica , Interleucina-17/genética , Interleucina-17/metabolismo , Mucosa Intestinal , Celulas de Paneth/metabolismo
9.
Cell Tissue Res ; 388(2): 225-238, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35171324

RESUMO

The diversified natriuretic peptide (NP) family, consisting of four CNPs (CNP1-4), ANP, BNP, and VNP, has been identified in the eel. Here, we successfully cloned additional cnp genes from the brain of eel (a basal teleost) and zebrafish (a later branching teleost). The genes were identified as paralogues of cnp4 generated by the third round of whole genome duplication (3R) in the teleost lineage, thereby being named eel cnp4b and zebrafish cnp4-like, respectively. To examine the histological patterns of their expressions, we employed a newly developed in situ hybridization (ISH) chain reaction using short hairpin DNAs, in addition to conventional ISH. Eel cnp4b was expressed in the medulla oblongata, while mRNAs of eel cnp4a (former cnp4) were localized in the preoptic area. In the zebrafish brain, cnp4-like mRNA was undetectable, while the known cnp4 was expressed in both the preoptic area and medulla oblongata. Together with the different mRNA distribution of cnp4a and cnp4b in eel peripheral tissues determined by RT-PCR and ISH, it is suggested that subfunctionalization by duplicated cnp4s in ancestral teleosts has been retained only in basal teleosts. Intriguingly, cnp4b-expressing neurons in the glossopharyngeal-vagal motor complex of the medulla oblongata were co-localized with choline acetyltransferase, suggesting an involvement of Cnp4b in swallowing and respiration functions that are modulated by the vagus. Since teleost Cnp4 is an ortholog of mammalian CNP, the identified localization of teleost Cnp4 will contribute to future studies aimed at deciphering the physiological functions of CNP.


Assuntos
Duplicação Gênica , Peptídeo Natriurético Tipo C , Animais , Fator Natriurético Atrial/genética , Mamíferos/metabolismo , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Tipo C/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
eNeuro ; 9(1)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35017259

RESUMO

Oxytocin (Oxt) controls reproductive physiology and various kinds of social behaviors, but the exact contribution of Oxt to different components of parental care still needs to be determined. Here, we illustrate the neuroanatomical relations of the parental nurturing-induced neuronal activation with magnocellular Oxt neurons and fibers in the medial preoptic area (MPOA), the brain region critical for parental and alloparental behaviors. We used genetically-targeted mouse lines for Oxt, Oxt receptor (Oxtr), vasopressin receptor 1a (Avpr1a), vasopressin receptor 1b (Avpr1b), and thyrotropin-releasing hormone (Trh) to systematically examine the role of Oxt-related signaling in pup-directed behaviors. The Oxtr-Avpr1a-Avpr1b triple knock-out (TKO), and Oxt-Trh-Avpr1a-Avpr1b quadruple KO (QKO) mice were grossly healthy and fertile, except for their complete deficiency in milk ejection and modest deficiency in parturition secondary to maternal loss of the Oxt or Oxtr gene. In our minimal stress conditions, pup-directed behaviors in TKO and QKO mothers and fathers, virgin females and males were essentially indistinguishable from those of their littermates with other genotypes. However, Oxtr KO virgin females did show decreased pup retrieval in the pup-exposure assay performed right after restraint stress. This stress vulnerability in the Oxtr KO was abolished by the additional Avpr1b KO. The general stress sensitivity, as measured by plasma cortisol elevation after restraint stress or by the behavioral performance in the open field (OF) and elevated plus maze (EPM), were not altered in the Oxtr KO but were reduced in the Avpr1b KO females, indicating that the balance of neurohypophysial hormones affects the outcome of pup-directed behaviors.


Assuntos
Ocitocina , Receptores de Ocitocina , Animais , Feminino , Masculino , Camundongos , Neurônios , Parto , Gravidez , Receptores de Ocitocina/genética , Comportamento Social
11.
Cell Rep ; 35(9): 109204, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077719

RESUMO

Maternal mammals exhibit heightened motivation to care for offspring, but the underlying neuromolecular mechanisms have yet to be clarified. Here, we report that the calcitonin receptor (Calcr) and its ligand amylin are expressed in distinct neuronal populations in the medial preoptic area (MPOA) and are upregulated in mothers. Calcr+ MPOA neurons activated by parental care project to somatomotor and monoaminergic brainstem nuclei. Retrograde monosynaptic tracing reveals that significant modification of afferents to Calcr+ neurons occurs in mothers. Knockdown of either Calcr or amylin gene expression hampers risk-taking maternal care, and specific silencing of Calcr+ MPOA neurons inhibits nurturing behaviors, while pharmacogenetic activation prevents infanticide in virgin males. These data indicate that Calcr+ MPOA neurons are required for both maternal and allomaternal nurturing behaviors and that upregulation of amylin-Calcr signaling in the MPOA at least partially mediates risk-taking maternal care, possibly via modified connectomics of Calcr+ neurons postpartum.


Assuntos
Comportamento Animal/fisiologia , Comportamento Materno/fisiologia , Área Pré-Óptica/metabolismo , Receptores da Calcitonina/metabolismo , Assunção de Riscos , Transdução de Sinais , Animais , Estrogênios/metabolismo , Feminino , Inativação Gênica , Marcação de Genes , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Lactação , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Período Pós-Parto , Prolactina/metabolismo , Sinapses/metabolismo , Regulação para Cima
12.
Front Neurosci ; 15: 649159, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867927

RESUMO

The preoptic area (POA) has long been recognized as a sleep center, first proposed by von Economo. The POA, especially the medial POA (MPOA), is also involved in the regulation of various innate functions such as sexual and parental behaviors. Consistent with its many roles, the MPOA is composed of subregions that are identified by different gene and protein expressions. This review addresses the current understanding of the molecular and cellular architecture of POA neurons in relation to sleep and reproductive behavior. Optogenetic and pharmacogenetic studies have revealed a diverse group of neurons within the POA that exhibit different neural activity patterns depending on vigilance states and whose activity can enhance or suppress wake, non-rapid eye movement (NREM) sleep, or rapid eye movement (REM) sleep. These sleep-regulating neurons are not restricted to the ventrolateral POA (VLPO) region but are widespread in the lateral MPOA and LPOA as well. Neurons expressing galanin also express gonadal steroid receptors and regulate motivational aspects of reproductive behaviors. Moxd1, a novel marker of sexually dimorphic nuclei (SDN), visualizes the SDN of the POA (SDN-POA). The role of the POA in sleep and other innate behaviors has been addressed separately; more integrated observation will be necessary to obtain physiologically relevant insight that penetrates the different dimensions of animal behavior.

13.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526663

RESUMO

The suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals, is a network structure composed of multiple types of γ-aminobutyric acid (GABA)-ergic neurons and glial cells. However, the roles of GABA-mediated signaling in the SCN network remain controversial. Here, we report noticeable impairment of the circadian rhythm in mice with a specific deletion of the vesicular GABA transporter in arginine vasopressin (AVP)-producing neurons. These mice showed disturbed diurnal rhythms of GABAA receptor-mediated synaptic transmission in SCN neurons and marked lengthening of the activity time in circadian behavioral rhythms due to the extended interval between morning and evening locomotor activities. Synchrony of molecular circadian oscillations among SCN neurons did not significantly change, whereas the phase relationships between SCN molecular clocks and circadian morning/evening locomotor activities were altered significantly, as revealed by PER2::LUC imaging of SCN explants and in vivo recording of intracellular Ca2+ in SCN AVP neurons. In contrast, daily neuronal activity in SCN neurons in vivo clearly showed a bimodal pattern that correlated with dissociated morning/evening locomotor activities. Therefore, GABAergic transmission from AVP neurons regulates the timing of SCN neuronal firing to temporally restrict circadian behavior to appropriate time windows in SCN molecular clocks.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo , Vasopressinas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Comportamento Animal , Cálcio/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Locomoção , Camundongos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Fatores de Tempo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/deficiência , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
14.
Front Mol Neurosci ; 13: 75, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477063

RESUMO

The visualization of multiple gene expressions in well-preserved tissues is crucial for the elucidation of physiological and pathological processes. In situ hybridization chain reaction (HCR) is a method to visualize specific mRNAs in diverse organisms by applying a HCR that is an isothermal enzyme-free nucleotide polymerization method using hairpin DNAs. Although in situ HCR is a versatile method, this method is not widely used by researchers because of their higher cost than conventional in situ hybridization (ISH). Here, we redesigned hairpin DNAs so that their lengths were half the length of commonly used hairpin DNAs. We also optimized the conjugated fluorophores and linkers. Modified in situ HCR showed sufficient fluorescent signals to detect various mRNAs such as Penk, Oxtr, Vglut2, Drd1, Drd2, and Moxd1 in mouse neural tissues with a high signal-to-noise ratio. The sensitivity of modified in situ HCR in detecting the Oxtr mRNA was better than that of fluorescent ISH using tyramide signal amplification. Notably, the modified in situ HCR does not require proteinase K treatment so that it enables the preservation of morphological structures and antigenicity. The modified in situ HCR simultaneously detected the distributions of c-Fos immunoreactivity and Vglut2 mRNA, and detected multiple mRNAs with a high signal-noise ratio at subcellular resolution in mouse brains. These results suggest that the modified in situ HCR using short hairpin DNAs is cost-effective and useful for the visualization of multiple mRNAs and proteins.

15.
iScience ; 20: 1-13, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31546102

RESUMO

Orexins are hypothalamic neuropeptides that regulate feeding, energy expenditure, and sleep. Although orexin-deficient mice are susceptible to obesity, little is known about the roles of the orexin receptors in long-term energy metabolism. Here, we performed the metabolic characterization of orexin receptor-deficient mice. Ox1r-deficient mice were resistant to diet-induced obesity, and their food intake was similar between chow and high-fat food. Ox2r-deficient mice exhibited less energy expenditure than wild-type mice when fed a high-fat diet. Neither Ox1r-deficient nor Ox2r-deficient mice showed body weight gain similar to orexin-deficient mice. Although the presence of a running wheel suppressed diet-induced obesity in wild-type mice, the effect was weaker in orexin neuron-ablated mice. Finally, we did not detect abnormalities in brown adipose tissues of orexin-deficient mice. Thus, each orexin receptor signaling has a unique role in energy metabolism, and orexin neurons are involved in the interactive effect of diet and exercise on body weight gain.

16.
J Comp Neurol ; 527(4): 874-900, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30516281

RESUMO

Gobiida is a basal subseries of percomorphs in teleost fishes, holding a useful position for comparisons with other orders of Percomorpha as well as other cohort of teleosts. Here, we describe a telencephalic atlas of a Gobiida species Rhinogobius flumineus (Mizuno, Memoirs of the College of Science, University of Kyoto, Series B: Biology, 1960; 27, 3), based on cytoarchitectural observations, combined with analyses of the distribution patterns of neurochemical markers and transcription factors. The telencephalon of R. flumineus shows a number of features distinct from those of other teleosts. Among others, the followings were of special note. (a) The lateral part of dorsal telencephalon (Dl), which is known as a visual center in other teleosts, is composed of as many as seven regions, some of which are conspicuous, circumscribed by cell plates. These subdivisions of the Dl can be differentiated clearly by differential soma size and color with Nissl-staining, and distribution patterns of neural markers. (b) Cell populations continuous with the ventral region of dorsal part of ventral telencephalon (vVd) exhibit extensive dimension. Especially, portion 1 of the central part of ventral telencephalon appears to represent a cell population laterally translocated from the vVd, forming a large cluster of small cells that penetrate deep into the central part of dorsal telencephalon. (c) The magnocellular subdivision of dorsal part of dorsal telencephalon (Ddmg) contains not only large cells but also vglut2a-positive clusters of small cells that cover a wide range of the caudal Ddmg. Such clusters of small cells have not been observed in the Ddmg of other teleosts.


Assuntos
Atlas como Assunto , Peixes/anatomia & histologia , Telencéfalo/citologia , Animais , Biomarcadores/análise , Transcriptoma
17.
Anat Sci Int ; 94(1): 39-52, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30392107

RESUMO

The medial preoptic area (MPOA), an anterior part of the hypothalamus, is one of the most important areas for the regulation of instinctively motivated behaviors, such as parental behavior, mating behavior and aggression. Consistent with its role in reproductive behaviors, the MPOA abundantly expresses gonadal steroid hormone receptors and shows distinct sexual dimorphism in its morphology. Despite the functional importance of the MPOA, the anatomical demarcations of the mouse MPOA subregions have been confusing and remained undefined because of their heterogeneity and complexity. In this review, I first introduce our histological examination showing differential expression of various molecules among the MPOA subregions. I also provide useful molecular markers to delineate the mouse MPOA subregions showing sexual dimorphism. Based on this anatomical study at the subregion level, I also summarize the current understanding of the role of the mouse MPOA and adjacent bed nucleus of the stria terminalis in parental motivation: the central part of the MPOA is essential for parental motivation, and this area exerts an inhibitory effect on the neural activity in the BNST rhomboid nucleus resulting in suppressed infanticide.


Assuntos
Comportamento Animal/fisiologia , Instinto , Núcleos da Linha Média do Tálamo/anatomia & histologia , Área Pré-Óptica/anatomia & histologia , Caracteres Sexuais , Animais , Biomarcadores/metabolismo , Humanos , Camundongos , Núcleos da Linha Média do Tálamo/citologia , Núcleos da Linha Média do Tálamo/metabolismo , Motivação/fisiologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo
18.
Front Cell Neurosci ; 12: 204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057526

RESUMO

A human infant initially shows non-selective sociality, and gradually develops selective attachment toward its caregiver, manifested as "separation anxiety." It was unclear whether such sophistication of attachment system occurs in non-human mammals. To seek a mouse model of separation anxiety, we utilized a primitive attachment behavior, the Transport Response, in that both human and mouse newborns immediately stop crying and stay immobile to cooperate with maternal carrying. We examined the mouse Transport Response in three social contexts: 30-min isolation in a novel environment, 30-min maternal absence experienced with littermates in the home cage, and the control home-cage condition with the mother and littermates. The pups after postnatal day (PND) 13 attenuated their Transport Response not only in complete isolation but also by maternal absence, and activated several brain areas including the periventricular nucleus of the hypothalamus, suggesting that 30-min maternal absence was perceived as a social stress by mouse pups after PND13. This attenuation of Transport Response by maternal absence was independent with plasma corticosterone, but was diminished by prior administration of a corticotropin-releasing factor receptor 1 (CRFR1) antagonist. Among 18 brain areas examined, only neurons in the anterior cingulate cortex (ACC) co-express c-fos mRNA and CRFR1 after maternal absence. Consistently, excitotoxic ACC lesions inhibited the maternal absence-induced attenuation of Transport Response. These data indicate that the expression of mouse Transport Response is influenced not only by social isolation but also by maternal absence even in their home cage with littermates after PND13, at least partly via CRF-CRFR1 signaling in the ACC.

19.
Am J Physiol Endocrinol Metab ; 315(5): E848-E858, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29989853

RESUMO

Sleep deprivation is associated with increased risk for type 2 diabetes mellitus. However, the underlying mechanisms of sleep deprivation-induced glucose intolerance remain elusive. The aim of this study was to investigate the mechanisms of sleep deprivation-induced glucose intolerance in mice with a special focus on the liver. We established a mouse model of sleep deprivation-induced glucose intolerance using C57BL/6J male mice. A single 6-h sleep deprivation by the gentle handling method under fasting condition induced glucose intolerance. Hepatic glucose production assessed by a pyruvate challenge test was significantly increased, as was hepatic triglyceride content (by 67.9%) in the sleep deprivation group, compared with freely sleeping control mice. Metabolome and microarray analyses were used to evaluate hepatic metabolites and gene expression levels and to determine the molecular mechanisms of sleep deprivation-induced hepatic steatosis. Hepatic metabolites, such as acetyl coenzyme A, 3ß-hydroxybutyric acid, and certain acylcarnitines, were significantly increased in the sleep deprivation group, suggesting increased lipid oxidation in the liver. In contrast, fasted sleep-deprived mice showed that hepatic gene expression levels of elongation of very long chain fatty acids-like 3, lipin 1, perilipin 4, perilipin 5, and acyl-CoA thioesterase 1, which are known to play lipogenic roles, were 2.7, 4.5, 3.7, 2.9, and 2.8 times, respectively, those of the fasted sleeping control group, as assessed by quantitative RT-PCR. Sleep deprivation-induced hepatic steatosis and hepatic insulin resistance seem to be mediated through upregulation of hepatic lipogenic enzymes.


Assuntos
Fígado Gorduroso/etiologia , Glucose/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Privação do Sono/complicações , Triglicerídeos/metabolismo , Animais , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Intolerância à Glucose/metabolismo , Fígado/patologia , Masculino , Camundongos , Estresse Oxidativo/fisiologia , Privação do Sono/metabolismo , Privação do Sono/patologia
20.
Cell Rep ; 24(1): 79-94, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972793

RESUMO

The mammalian brain undergoes sexual differentiation by gonadal hormones during the perinatal critical period. However, the machinery at earlier stages has not been well studied. We found that Ptf1a is expressed in certain neuroepithelial cells and immature neurons around the third ventricle that give rise to various neurons in several hypothalamic nuclei. We show that conditional Ptf1a-deficient mice (Ptf1a cKO) exhibit abnormalities in sex-biased behaviors and reproductive organs in both sexes. Gonadal hormone administration to gonadectomized animals revealed that the abnormal behavior is caused by disorganized sexual development of the knockout brain. Accordingly, expression of sex-biased genes was severely altered in the cKO hypothalamus. In particular, Kiss1, important for sexual differentiation of the brain, was drastically reduced in the cKO hypothalamus, which may contribute to the observed phenotypes in the Ptf1a cKO. These findings suggest that forebrain Ptf1a is one of the earliest regulators for sexual differentiation of the brain.


Assuntos
Prosencéfalo/embriologia , Diferenciação Sexual , Fatores de Transcrição/metabolismo , Animais , Linhagem da Célula , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/anormalidades , Hipotálamo/embriologia , Hipotálamo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Diferenciação Sexual/genética , Comportamento Sexual Animal , Fatores de Transcrição/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...